Number Systems

DR. TAREK A. TUTUNJI PHILADELPHIA UNIVERSITY, JORDAN

• Programmable controllers use **binary** numbers in one form or another to represent various codes and quantities.

• Every number system has a base.

• The **base** of a number system determines the total number of unique symbols used by that system.

Figure 2-2. Weighted values.

Binary Number System

The binary number system uses the number 2 as the base. Thus, the only allowable digits are:
0 (Off) and 1 (On).

Figure 2-4. One word, two bytes, sixteen bits.

Octal Number System

The octal number system uses the number 8 as its base, with its eight digits being 0, 1, 2, 3, 4, 5, 6, and 7.

Hexadecimal Number System

The hexadecimal (hex) number system uses 16 as its base.

Hexadecimal Number System

Binary	Decimal	Hexadecimal
0	0	0
1	1	1
10	2	2
11	3	3
100	4	4
101	5	5
110	6	6
111	7	7
1000	8	8
1001	9	9
1010	10	A
1011	11	В
1100	12	С
1101	13	D
1110	14	E
1111	15	F

Table 2-3. Binary, decimal, and hexadecimal counting.

Number Conversions

- To convert a decimal number to its equivalent in any base, you must perform a series of divisions by the desired base.
- The conversion process starts by dividing the decimal number by the base.
 - If there is a remainder, it is placed in the **least significant digit** (right-most) position of the new base number.
 - If there is no remainder, a o is placed in least significant digit position.
- The result of the division is then brought down, and the process is repeated until the final result of the successive divisions is 0.

Number Conversion Example: convert decimal to binary

• The binary equivalent of the decimal number 35 is 100011.

Division	Remainder
35 ÷ 2 = 17	1
17 ÷ 2 = 8	1
8 ÷ 2 = 4	0
4 ÷ 2 = 2	0
2 ÷ 2 = 1	0
1 ÷ 2	= 0 1

Number Conversion Example: convert decimal to hexadecimal

Division	Remainder
1355 ÷ 16 = 84	11
84 ÷ 16 = 5	4
5 ÷ 16 = 0	5

• The hexadecimal equivalent of 1355_{10} is $54B_{hex}$

Negative Numbers

- Consider the decimal number 23, or binary:10111₂
- What about -23?
 - If a minus sign is placed in front of the number, as we do with decimal numbers: $-(10111)_2$
- This method is suitable for us, but it is impossible for programmable controllers and computers to interpret, since the only symbols they use are binary 1s and 0s.
- Therefore, two's compliment is used.

Two's Compliment

- The **two's complement** uses an extra digit to represent the sign.
- In the two's complement computation, each bit (from right to left) is inverted <u>only after the first 1 is detected</u>.
- Let's use the number +22 decimal as an example:
 +22₁₀ = 0 10110₂
- Its two's complement would be:
 - $-22_{10} = 1\ 01010_2$

Binary Codes

- An important requirement of programmable controllers is communication with various external (I/O) devices.
- This input/output function involves the transmission, manipulation, and storage of binary data that, at some point, must be interpreted by humans.
- Binary coding is the process of assigning a unique combination of 1s and 0s to each number, letter, or symbol that must be represented.
- The most common codes used in the industry are:
 - o ASCII
 - o BCD
 - o Gray

ASC II

- Alphanumeric codes are used when information processing equipment, such as printers and cathode ray tubes (CRTs), must process the alphabet along with numbers and special symbols.
- These alphanumeric characters—26 letters (uppercase), 10 numerals (0-9), plus mathematical and punctuation symbols— can be represented using a 6-bit code (i.e., 2⁶ = 64 possible characters).
- The most common code for alphanumeric representation is **ASCII** (the American Standard Code for Information Interchange). Although a 6bit code (64 possible characters) can accommodate the basic alphabet, numbers, and special symbols, standard ASCII character sets use a 7bit code (2⁷ = 128 possible characters), which provides room for lower case and control characters, in addition to the characters already mentioned.

BCD

- The **binary coded decimal (BCD)** system was introduced as a convenient way for humans to
 - Handle numbers that must be input to digital machines
 - Interpret numbers that are output from machines.

Decimal	Binary	BCD
0	0	0000
1	1	0001
2	10	0010
3	11	0011
4	100	0100
5	101	0101
6	110	0110
7	111	0111
8	1000	1000
9	1001	1001

Table 2-4. Decimal, binary, and BCD counting.

Figure 2-7. (a) A seven-segment indicator field device and (b) a thumbwheel switch.

Figure 2-8. (a) Thumbwheel switch converts decimal numbers into BCD inputs for the PLC.(b) The seven-segment display converts the BCD outputs from the PLC into a decimal number.

Gray

Figure 2-9. An absolute encoder with BCD and Gray outputs.

Gray

Gray Code	Binary	Decimal
0000	0	0
0001	1	1
0011	10	2
0010	11	3
0110	100	4
0111	101	5
0101	110	6
0100	111	7
1100	1000	8
1101	1001	9
1111	1010	10
1110	1011	11
1010	1100	12
1011	1101	13
1001	1110	14
1000	1111	15

Table 2-5. Gray code, binary, and decimal counting.

Register Word Format

- Programmable controller perform all internal operations in binary format using 1s and 0s. In addition, the status of I/O field devices is also read and written, in binary form, to and from the PLC's CPU.
- Generally, these operations are performed using a group of 16 bits.
- A PLC word (16-bits) is also called a **register**.

REFERENCE: PROGRAMMABLE CONTROLLERS: THEORY AND IMPLEMENTATION BY BRYAN AND BRYAN

