Number Systems

DR. TAREKA.TUTUNJI
PHILADELPHIA UNIVERSITY, JORDAN

Number Systems

- Programmable controllers use binary numbers in one form or another to represent various codes and quantities.
- Every number system has a base.
- The base of a number system determines the total number of unique symbols used by that system.

Decimal Number System

Position (n)			
Value (V)	V_{3}	2	1
V_{2}	V_{1}	V_{0}	

(Base $=10$ for decimal)

Figure 2-2. Weighted values.

Decimal Number System

Binary Number System

- The binary number system uses the number 2 as the base. Thus, the only allowable digits are:
o (Off) and 1 (On).
Most
Significant Bit (MSB)

Figure 2-4. One word, two bytes, sixteen bits.

Binary Number System

Octal Number System

 (- The octal number system uses the number 8 as its base, with its eight digits being $0,1,2,3,4,5$, 6 , and 7 .

Position
Number

Hexadecimal Number System

- The hexadecimal (hex) number system uses 16 as its base.

Position
Number

Hexadecimal Number System

Binary	Decimal	Hexadecimal
0	0	0
1	1	1
10	2	2
11	3	3
100	4	4
101	5	5
110	6	6
111	7	7
1000	8	8
1001	9	9
1010	10	A
1011	11	B
1100	12	C
1101	13	D
1110	14	E

Table 2-3. Binary, decimal, and hexadecimal counting.

Number Conversions

- To convert a decimal number to its equivalent in any base, you must perform a series of divisions by the desired base.
- The conversion process starts by dividing the decimal number by the base.
- If there is a remainder, it is placed in the least significant digit (right-most) position of the new base number.
- If there is no remainder, a o is placed in least significant digit position.
- The result of the division is then brought down, and the process is repeated until the final result of the successive divisions is 0 .

Number Conversion Example: convert decional to binary

- The binary equivalent of the decimal number 35 is 100011.

Division	Remainder
$35 \div 2=17$	1
$17 \div 2=8$	1
$8 \div 2=4$	0
$4 \div 2=2$	0
$2 \div 2=1$	0
$1 \div 2=0$	1

Number Conversion Example: convert decimadto hexadecimal

Division

Remainder
$1355 \div 16=84$

$$
84 \div 16=5
$$

$$
4
$$

$$
5 \div 16=0
$$

- The hexadecimal equivalent of 1355_{10} is $54 \mathrm{~B}_{\text {hex }}$

Negative Numbers

- Consider the decimal number 23, or binary:10111 ${ }_{2}$
- What about -23 ?
- If a minus sign is placed in front of the number, as we do with decimal numbers: -(10111) ${ }_{2}$
- This method is suitable for us, but it is impossible for programmable controllers and computers to interpret, since the only symbols they use are binary is and os.
- Therefore, two's compliment is used.

Two's Compliment

- The two's complement uses an extra digit to represent the sign.
- In the two's complement computation, each bit (from right to left) is inverted only after the first 1 is detected.
- Let's use the number +22 decimal as an example:
$0+22_{10}=010110_{2}$
- Its two's complement would be:
$-22_{10}=10_{0101 O_{2}}$

Binary Codes

- An important requirement of programmable controllers is communication with various external (I/O) devices.
- This input/output function involves the transmission, manipulation, and storage of binary data that, at some point, must be interpreted by humans.
- Binary coding is the process of assigning a unique combination of 1 s and os to each number, letter, or symbol that must be represented.
- The most common codes used in the industry are:
- ASCII
- BCD
- Gray

ASC II

- Alphanumeric codes are used when information processing equipment, such as printers and cathode ray tubes (CRTs), must process the alphabet along with numbers and special symbols.
- These alphanumeric characters-26 letters (uppercase), 10 numerals (0-9), plus mathematical and punctuation symbols- can be represented using a 6 -bit code (i.e., $2^{6}=64$ possible characters).
- The most common code for alphanumeric representation is ASCII (the American Standard Code for Information Interchange). Although a 6bit code (64 possible characters) can accommodate the basic alphabet, numbers, and special symbols, standard ASCII character sets use a 7bit code ($2^{7}=128$ possible characters), which provides room for lower case and control characters, in addition to the characters already mentioned.

BCD

- The binary coded decimal (BCD) system was introduced as a convenient way for humans to
- Handle numbers that must be input to digital machines
- Interpret numbers that are output from machines.

Decimal	Binary	BCD
0	0	0000
1	1	0001
2	10	0010
3	11	0011
4	100	0100
5	101	0101
6	110	0110
7	111	0111
8	1000	1000
9	1001	1001

Table 2-4. Decimal, binary, and BCD counting.

Figure 2-7. (a) A seven-segment indicator field device and (b) a thumbwheel switch.

Decimal converted to BCD inside TWS
(a)
 to 7 -segment inside display
(b)

Figure 2-8. (a) Thumbwheel switch converts decimal numbers into BCD inputs for the PLC. (b) The seven-segment display converts the BCD outputs from the PLC into a decimal number.

Gray

(

- The Gray code is basically a modified binary code where only one bit changes as the counting number increases. This reduces the change of error. Therefore, it is suited primarily for position transducers

Figure 2-9. An absolute encoder with BCD and Gray outputs.

Gray

Gray Code	Binary	Decimal
0000	0	0
0001	1	1
0011	10	2
0010	11	3
0110	100	4
0111	101	5
0101	110	6
0100	111	7
1100	1000	8
1101	1001	9
1111	1010	10
1110	1011	11
1010	1100	12
1011	1101	13
1001	1110	14
1000	1111	15

Table 2-5. Gray code, binary, and decimal counting.

Register Word Format

- Programmable controller perform all internal operations in binary format using 1s and os. In addition, the status of I/O field devices is also read and written, in binary form, to and from the PLC's CPU.
- Generally, these operations are performed using a group of 16 bits.
- A PLC word (16-bits) is also called a register.

Figure 2-10. A 16-bit register/word.

REFERENCE: PROGRAMMABLE CONTROLLERS: THEORY AND IMPLEMENTATION BYBRYAN AND BRYAN

